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QSAR analysis including 2D QSAR, 3D QSAR and pharmacophore mapping studies have been
performed on a series of arylsulfonylimidazolidinone derivatives to explore the physico-chemical
properties and basic pharmacophore responsible for anti-cancer activity. The 2D-QSAR studies were
carried out using the partial least squares (PLS) method coupled with stepwise variable selection,
with r2 = 0.7106 and g2 = 0.5176; the 3D-QSAR studies were performed using stepwise variable
selection k-nearest-neighbor molecular field analysis (kNNMF) approach; with cross-validated
correlation coefficient (q2) of 0.5909. Pharmacophore mapping resulted in highly predictive
pharmacophore based 3D-QSAR model with five point hypotheses (AADHR.18) with two acceptor
atom, one donor group, one hydrophobic group and one aromatic ring as pharmacophore features.
This is denoted as A2A3D5R10H7. Research indicated that alignment-independent descriptors, steric
field and electrostatic field descriptors were significantly correlating with anticancer activity of
arylsulfonylimidazolidinone derivatives.
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INTRODUCTION drugs much more rapidly than predicted by
Much of the general public sees cancer as a conventional mutation, and how cancer cells
modern day plague that results in high generate such resistance with the very same
morbidity (Green and Evan, 2002). Cancer cells genes they just inherited from normal, drug
rapidly acquire resistance against numerous sensitive precursor cells (Duesberg et al 2007).
cytotoxic drugs or are even intrinsically The occurrence of localized changes in
resistant. Despite over 50 years of research, it is chromatin structure at transcriptional start sites
still debated, how cancer cells generate complex has been well appreciated; however, it is now
resistance phenotypes against a multitude of emerging that the alterations are genome wide.

70 e ||



Indeed, early studies pointed to an overall
decrease in the 5-methylcytosine content of
cancer genomes (Jones and Baylin, 2007). Use of
computational techniques in drug discovery and
development process is rapidly gaining in
popularity, implementation and appreciation.
These methods are expected to limit and focus
chemical synthesis and biological testing and
thereby greatly decrease traditional resource
requirements (Kapetanovic, 2008). Drugs are
essential for the prevention and treatment of
disease. Human life is constantly threatened by
many diseases such as cancer. Therefore, ideal
drugs are always in great demand. To meet the
challenges of ideal drugs, an efficient method of
drug development is demanding (Mandal et al
2009). Having emerged as a quantitative
structure activity relationship (QSAR) analysis in
the early 1960s, the concept of CADD has
evolved very quickly, especially in the recent
decade as an unprecedented development of
structural biology and computer capabilities.
CADD  technologies including molecular
modeling and simulation have become
promising in drug discovery (Tang et al 2006;
Bansal et al 2011; Kumar, 2011; Sharma et al
2011; Jain et al 2013). Quantitative structure
activity relationship (QSAR) research field has
been widely developed, from its very first
beginnings when, in 1865, Crum-Brown and
Fraser postulated a relationship between any
physiological activity and the corresponding
chemical structure (Saliner and Girones, 2005).
The key goal of computer-aided molecular
design methods in modern medicinal chemistry
is to reduce the overall cost associated with the
discovery and development of a new drug, by
identifying the most promising candidates to
focus on the experimental efforts (Langer and
Wolber, 2004). In drug discovery, the
chemoinformatics techniques such as virtual
screening, pharmacophore modeling,
quantitative  structure-activity  relationship
(QSAR), data mining, etc. are of great
significance, being considerably precise as well
as saving time and cost. One of the several ways
is to develop a 3D-pharmacophoremodel and
utilize it in the virtual screening of available
databases, which seems to be more significant
and time saving (Ambure et al 2014). A
pharmacophore (pharmacophore model,
pharmacophoric pattern) can be considered as
the ensemble of steric and electrostatic features
of different compounds which are necessary to
ensure optimal supramolecular interactions with
a specific biological target structure and to
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trigger or to block its biological response
(Langer and Wolber, 2004). 3D pharmacophore
based techniques have become one of the most
important approaches for the fast and accurate
virtual screening of databases with millions of
compounds. The success of 3D pharmacophore
is largely based on their intuitive interpretation
and creation (Seidel et al 2010). The
pharmacophore detection module is able to: (i)
align multiple flexible ligands in a deterministic
manner without exhaustive enumeration of the
conformational space, (ii) detect subsets of input
ligands that may bind to different binding sites
or have different binding modes, (iii) address
cases where the input ligands have different
affinities by defining weighted pharmacophore
based on the number of ligands that share them,
and (iv) automatically select the most
appropriate pharmacophore candidates for
virtual screening (Dror et al 2009). In present
investigation, QSAR analysis including 2D QSAR,
3D QSAR and pharmacophore mapping studies
were performed on a series of
arylsulfonylimidazolidinone  derivatives  to
explore the physico-chemical properties and
basic pharmacophore responsible for anti-
cancer activity.

MATERIALS AND METHODS

A set of 32 molecules of arylsulfonyl
imidazolidinone derivatives reported by (Park
Choo et al 2003) was subjected to the 2D, 3D
QSAR analysis and pharmacophore mapping for
their anticancer activity. All QSAR studies were
performed in V-Life MDS software Version 3.5
and the pharmacophore mapping was
performed by Schrodinger Maestro 9.5. (Phase
2013; Maestro, 2013). The biological activity of
the compounds was reported as ICso values (nm)
and converted to plCso (log 1/1Cs0) values. The
structures of all 32 compounds along with their
biological activity values are included in Table 1.

Processing of molecules

The set of molecules considered in this study
was sketched and optimized by MMFF method
for 2D, 3D QSAR method. For pharmacophore
mapping, the molecules were geometrically
refined using LigPrep module implemented in
the “Maestro suite” program (version 9.5)
(Maestro, 2012). After the sketching of all
molecules, cleaning and conformational search
was performed in “develop pharmacophore”
module of PHASE.

The conformations were generated by the Monte
Carlo (MCMM) method as implemented in
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MacroModel version 9.5 using a maximum of
1000 steps with a distance-dependent dielectric
solvent model and an OPLS-2005 force field.
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These conformers were employed for the
development of pharmacophore model (Mehta et
al 2012).

Table 1. Structure of the compounds in the series along with their biological activity
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Molecule X R pICso(LM)
S1 0 -NHCH,CH3 0.107
S2 0 -NHCH(CHs)2 0.770
S3 0 -NHCeH14 2.254
S4 0 -NHC¢Hs 0.347
S5 0 -NHC6H4(4-NH2) 0.207
S6 S -NHCH,CH3 0.013
S7 S NHCH,CH,CH; 0.299
S8 S NHCH,CH,CH2CH3 -0.09
S9 S -NHC¢Hs 0.664
S10 0 NHCeH4(2-OCH3) 0.537
S11 0 NHC¢H4(4-CHs) 0.198
S12 0 CeHs 0.048
S13 0 CeH4(2-OH) -0.113
S14 0 CeH4(4-0EY) 0.613
S15 0 CeH4(4-Cl) -0.062
S16 0 CeH4(2-NO3) -0.624
S17 0 CsH4(2-CN) -0.491
S18 0 CeH4(4-NH;) 0.737
S19 0 CeH4(3-Cl) -0.387
S20 0 CeHa(3-F) 0.205
S21 0 C¢H3(2,4-F) -0.577
S22 0 CsH4(3-0CF5) -0.701
S23 0 Ce¢H4(4-OCF3) -0.102
S24 0 NHCH,CH,CHs -0.053
S25 0 NHCeH4(4-0CH3) 0.431
S26 S NHCH; 1.158
S27 S NHCeH4(4-0OCH3) 0.269
S28 0 CsH4(4-OCH3) 0.292
S29 0 C¢H3(3,4-0CH3) 0.201
S30 0 CeHa(4-F) -0.360
S31 0 CeH3(3,5-Cl) -0.187
S32 0 CeH4(3-CF3) -0.659

2D QSAR

All the compounds for 2D QSAR were subjected
to energy minimization by MMFF (Molecular
mechanics force field method). Various 2D
descriptors like topological, physicochemical,
alignment-independent descriptors were
calculated after which by invariable column was
removed and the training and test set was
selected by manual selection method. The model
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for the 2D-QSAR study was generated using PLS
with forward backward as the variable selection
method.

3D QSAR

For studies, the molecules were converted from
2D to 3D structures, optimized by MMFF
(Molecular mechanics force field method) and
then were aligned using template based
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alignment method by taking most active
molecule B3 (Figure 1) as the reference
molecule and basic moiety (Figure 2) as the
template. The alignment is shown in Figure 3.
The QSAR model was built by kNN method using
forward-backward as variable selection method.
[t examines the steric fields and the electrostatic
fields. 3D-QSAR refers to the application of force
field calculations requiring three dimensional
structures, e.g. based on protein crystallography
or molecule superimposition (Ibezim et al 2009).
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Fig. 1. Reference molecule (B3) used for
alignment by template based alignment

Fig. 3. 3D view of aligned molecules

Pharmacophore mapping

Phase methodology

Pharmacophore modeling was carried out using
PHASE: a module of Schrédinger's software
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program ‘MAESTRO’ [9.5] (Mehta et al 2012;
Phase, 2013). This pharmacophore was used as
alignment rule in order to develop a 3D-QSAR
model (Dixon et al 2006). Phase provides the
option of doing QSAR with the selected
pharmacophore hypothesis (Rathi Suganya et al
2011).

Preparing ligands

The chemical structures of all the compounds
were drawn in maestro and geometrically
refined using LigPrep module. LigPrep was used
to attach hydrogen, converts 2D structures to
3D, generates stereoisomer, and, optionally,
neutralizes charged structures or determines the
most probable ionization state at user defined
pH. All the structures were ionized at neutral pH
7. The conformations were generated by the
Monte Carlo (MCMM) method as implemented in
Macro Model version 9.6 using a maximum of
100 steps with a distance-dependent dielectric
solvent model and an OPLS-2005 force field.

Pharmacophore hypothesis generation

The next step in developing a pharmacophore
model is to use a set of pharmacophore features
to create pharmacophore sites (site points) for
all the ligands. Once a feature has been mapped
to a specific location in a conformation, it is
referred to as a pharmacophore site. Common
pharmacophoric features were then identified
from a set of variants-a set of feature types that
define a possible pharmacophore. In the next
step, common pharmacophore hypothesis were
examined using a scoring function i.e. survival
scores of actives and inactives (Mehta et al
2012). The hypotheses were scored using
default parameters for site, vector, volume,
selectivity, number of matches, and energy
terms.

The regression analysis was performed by
constructing a series of models with an
increasing number of  PLS factors.
Pharmacophore-based 3D-QSAR models were
generated for the hypotheses (Kaur et al 2012).

RESULTS AND DISCUSSION

2D QSAR

The best QSAR model was selected among the
various models generated by PLS (Partial Least
Square analysis). The 2D QSAR equation and the
statistical parameters generated are shown
in the Table 2.

The QSAR model shows r2= 0.7106 and standard
error of 0.3512 which indicates the accuracy of
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the statistical fit. The stability of model judged
by leave-one-out procedure is fairly good (g2
=0.5176) suggesting that the models will be
useful for meaningful predictions. The
descriptors contributing to the biological activity
as generated are T_2_2_4, Polarizability AHC and

smr. The correlation matrix given in Table 3. In
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the correlation matrix, the values less than 0.6
indicate the absence of multi co-linearities in the
model. Figure 4 gives a pictorial representation
of different 2D parameters and their
contributions towards antitubercular activity.
The 2D parameters contributed to the biological
activity can be defined as below.

Table 2. Statistical results of 2D QSAR equation generated by PLS method

Equation plCs0 =-0.2172 T_2_2_4 -0.1950 Polarizability AHC + 0.0565 smr+2.0294
Statistics n = 25, Degree of freedom = 22, F test = 27.0052,r2 = 0.7106, q2 = 0.5176,
pred_r?=-0.0890, r2 se = 0.3512, q2 se = 0.4534, pred_r?se= 0.4986

Table 3. Correlation Matrix for the descriptors contributing to the 2D QSAR model

smr POlaX:Il(I:J ility T 224 Score
smr 1 0.406 0.295 3
Polarizibility AHC 0.406 1 -0.366 3
T 224 0.295 -0.366 1 3
T N_O_6 0.282 0.046 0.417 3
using the atomic hybrid component (AHC).
5 =20 smr
g o This descriptor evaluates molecular refractivity
= (including implicit hydrogen) which also
= . measure of molecular size. This property is an
= atomic contribution model that assumes the
5 40 - correct protonation state.
'% u':ul T224
=] = This is the count of number of double bounded
SI atoms (i.e. any double bonded atom, T_2)

Descriptors

Fig. 4. Contribution chart of selected 2D
descriptors for anticancer activity

Polarizability AHC
This descriptor evaluates molecular
polarizability using sum of atomic polarizability

separated from any other double bonded atom
by 4 bonds in a molecule. Uni-column statistics
as shown in Table 4 for training and test set
were generated to check correctness of selection
criteria for training and test set molecules.
Higher standard deviation in training set
indicates wide distribution of activity of
molecules as compared to test set molecules.

Table 4. Uni-Column statistics for training set and test set

Set Column name Average Max Min Std Dev Sum
Training pICso 0.2166 2.2540 -0.7010 0.6250 5.4160
Test pICso 0.0154 0.6130 -0.6590 0.4225 0.1080

Figure 5 showed the graph plotted between
actual and predicted biological activity. Training
set (points in red) as well as test set (points in
blue) are well closed to regression line and also
the training set are encircling the test set
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showing good predictive ability of the model.
The predicted activity values for the compounds
in the training set and test set, along with their
corresponding observed activity values, are
given in Table 5.
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Fig. 5. Fitness plot between observed and
predicted biological activities of training (blue
spot) and test (red spot) molecules of 2D model.
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3D QSAR

3D-QSAR was used to optimize the steric and
electrostatic requirement. 3D data points were
generated that contributed to k nearest neighbor
molecular field analysis (kNN-MFA) 3D-QSAR
model.

This is followed by generation of a common
rectangular grid around the molecules. The
steric interaction energies are computed at the
lattice points of the grid using a methyl probe of
charge +1.

The data points generated by 3D-QSAR are
shown in Figure 6.

Table 5. Observed and predicted activity of training set and test set with their residuals of 2D QSAR

Comp no. plICso (nm) Prediction (1m) Residual
*1 0.107 0.549014 -0.44201
2 0.770 0.519922 0.250078
3 2.254 1.97573 0.27827
4 0.347 0.699635 -0.35264
5 0.207 0.725389 -0.51839
6 0.013 0.452699 -0.4397
*7 0.299 0.413884 -0.11488
*8 -0.090 0.370857 -0.46086
9 0.664 0.673707 -0.00971
10 0.537 0.406811 0.130189

*11 0.198 0.673055 -0.47506
12 0.048 0.249832 -0.20183
13 -0.113 -0.11675 0.00375
*14 0.613 -0.039409 0.652409
15 -0.062 -0.037124 -0.02488
16 -0.624 -0.66131 0.03731
17 0.491 -0.007979 0.498979
18 0.737 0.278722 0.458278
19 -0.387 -0.037124 -0.34988
20 0.205 -0.016227 0.221227
21 -0.577 0.298364 -0.87536
22 -0.701 -0.190972 -0.51003
23 -0.102 -0.190972 0.088972
24 -0.053 0.521165 -0.57417
25 0.431 0.406811 0.024189
26 1.158 0.486803 0.671197
27 0.269 0.342933 -0.07393
28 0.292 -0.030022 0.322022
29 -0.201 -0.36707 0.16607
30 -0.360 -0.016227 -0.34377
*31 -0.187

*32 -0.659

*Test compound
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Fig. 6. Relative positions of the steric and
electrostatic fields around aligned molecules

The best model generated with kNN MFA
method showed a g2 as 0.5909 as shown in
Table 6. The predicted activity values for the

compounds in the training set and test set, along
with their corresponding actual activity values,
are given in Table 7.

Table 6. Statistical results of 3D QSAR model
generated by SW kNN MFA method

Model summary
Training Set Size =25
Test Set Size =7
k Nearest Neighbor =2
n =25
Degree of freedom =22
q? =0.5909
g?_se =0.2095
Pred_r? =-0.5099
pred_r2se =0.4684
E_1031 (0.7611,0.7615)
S_1467 (-0.1972, 0.0050)

Table 7. Actual and predicted activity of training set and test set with their residuals of 3D QSAR

Comp no. PICs0 (nm) Prediction (nm) Residual
*1 0.107 0.258057 -0.15106
2 0.770 -0.153712 0.923712
3 2.254 -0.922569 3.176569
4 0.347 0.437864 -0.09086
5 0.207 0.513135 -0.30614
6 0.013 -0.101923 0.114923
*7 0.299 0.921297 -0.6223
8 -0.090 -0.157614 0.067614
9 0.664 0.274351 0.389649
10 0.537 0.455364 0.081636
11 0.198 -0.049521 0.247521
12 0.048 0.216786 -0.16879
13 -0.113 -0.036712 -0.07629
14 0.613 0.415073 0.197927
15 -0.062 -0.092873 0.030873
16 -0.624 -0.679782 0.055782

*17 0.491 0.110385 0.380615
18 0.737 0.574535 0.162465
19 -0.387 -0.124462 -0.26254
20 0.205 -0.221524 0.426524
*21 -0.577 0.246325 -0.82333
22 -0.701 -0.64146 -0.05954
*23 -0.102 -0.146464 0.044464
*24 -0.053 0.2023 -0.2553

25 0.431 0.449473 -0.01847
26 1.158 1.35791 -0.19991
*27 0.269 0.406881 -0.13788
28 0.292 0.52064 -0.22864
29 -0.201 -0.101012 -0.09999
30 -0.360 0.412482 -0.77248
31 -0.187 -0.227113 0.040113
32 6.333 0.66132 5.67168

*Test set
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Figure 7 showed the graph plotted between
actual and predicted biological activity. Training
set (points in red) as well as test set (points in
blue) are well closed to regression line and
showing good predictive ability of the model.
The ranges of data point values were based on
the variation of the field values at the chosen
points using the most active molecule and its
nearest neighbor set. Points generated in SA
kNN-MFA 3D-QSAR model are S_1467 (-0.1972,
0.0050), E_.1031 (0.7611, 0.7615) i.e. steric data
points at lattice points 1467 and electrostatic at
1031 respectively.
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Fig. 7. Fitness plot between observed and
predicted activities of the training (blue spot)
and test (red spot) molecules of 3D model

Pharmacophore mapping
The pharmacophore mapping studies were

performed on the series of arylsulfonyl
imidazolidinone derivatives to identify common
structural features required for the biological
activity. A total of 4 different variant hypotheses
were generated upon completion of common
pharmacophore identification process. The
result of top four hypotheses high gradient score
is recorded in Table 8.

The top model was found to be associated with
the five point hypotheses (AADHR.18) which
consist of two acceptor group (A), one donor
group (D), one hydrophobic group (H) and one
aromatic rings (R). This is denoted as
A2A3D5H7R10. The best hypothesis showed the
survival score as 3.728.

The common pharmacophoric features are then
scored with reference to the volume occupied by
training set molecules. The special disposition of
the sites showing  distance  between
pharmacophoric sites is shown in Figure 8. The
pharmacophoric sites mapping over all the
molecules of dataset as well as active molecule is
shown in Figure 9 and Figure 10 respectively.
The pharmacophore hypothesis yielded a 3D-
QSAR model with good PLS statistics. Among
various PLS factors, PLS factor 4 was selected on
the basis of statistical parameters. The training
set correlation is characterized by PLS factor 4
(rz = 094, SD = 0.1861, F = 66.6,
stability=0.1067). Results of PLS statistics of 3D
QSAR model are shown in Table 9.

Table 8. Scoring results of the different hypotheses generated

Fig. 8. Selected hypothesis: AADHR.18
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S.No ID Survival | Survival-inactive | Post-hoc Site Vector | Volume | Selectivity
1 AHRR.100 3.728 1.136 3.728 0.88 1 0.846 1.752
2 AADHR.18 3.728 1.152 3.728 0.94 1 0.788 1.613
3 AAAHR.3 3.727 1.15 3.727 0.93 1 0.793 1.588
4 ADHRR.53 3.724 1.07 3.725 0.93 1 0.799 1.859

Table 9. Statistical results of generated 3D QSAR model
PLS SD r2 F Stability RMSE Q2 Pearson-R
1 0.5544 0.3741 12 0.8794 0.3263 -0.5417 0.6026
2 0.3456 0.7689 31.6 0.1369 0.2564 0.0478 0.5226
3 0.263 0.8732 41.3 -0.0392 0.2577 0.0383 0.4744
4 0.1861 0.94 66.6 0.1067 0.3131 -0.4196 0.3526
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Fig. 9. Pharmacophore mapped over all the

molecules of data set




Fig. 10. Pharmacophore mapped over active
molecule

The model was selected on the basis of value of
r2. The generated best model was further
validated for its external predictability. For
model generation and validation, the total
molecules were divided into training (22) and
test (11) set molecules. The reliability of the
model can be judged based on the external
prediction. The fitness scores of training and test
set molecules are presented in the Table 10. The
correlation scatter plot between actual and
predicted values of biological activity of training
and test set is presented in Figure 11.

Table 10. Fitness scores of all the training and test set compounds

Ligand name Pharm set QSAR set Fitness
Bs1 Active test 2.73
Bs2 Active training 2.84
Bs3 Active training 3
Bs4 training 2.72
Bs5 training 2.79
Bs6 training 2.8
Bs7 test 2.82
Bs8 training 2.86
Bs9 training 2.83

Bs10 test 2.81
Bs11 test 2.78
Bs12 test 2.6
Bs13 test 2.62
Bs14 training 2.62
Bs15 test 2.59
Bs16 Inactive training 2.62
Bs17 test 2.56
Bs18 Active training 2.58
Bs19 training 2.62
Bs20 training 2.58
Bs21 Inactive training 2.6
Bs22 Inactive training 2.56
Bs23 training 2.58
Bs24 training 2.77
Bs25 training 2.78
Bs26 Active training 2.77
Bs27 test 2.66
Bs28 training 2.64
Bs29 training 2.57
Bs30 test 2.58
Bs31 training 2.53
Bs32 Inactive training 2.54

Contour analysis

Contour plots generated from the best 3D QSAR
model are represented as positive and negative
activity coefficient of different properties are
given in Figures 12i-iii. The blue contours
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represent the regions where the substitution of
groups with the particular property may
enhance the biological activity whereas red
cubes represent the depreciating biological
activity.
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Fig. 11. Correlation scatter plot actual and
predicted activity of training and test
set molecules

Fig. 12i. Strereoviews of hydrogen bond donor
properties generated by contour plots
by 3D model.

Hydrogen bond donor property contour

As shown in the Figure 12i, blue contour around
the nitrogen atom of dihydro-indole ring
signifies the importance of H-bond donor group
at this position.

Hydrophobic property contour

The blue region around both the
cyclohexylamide group is in favorable region of
positive activity coefficient thereby increasing
the activity (Figure 12ii). The red region around
terminal phenyl group indicates that the
particular group is not important for the activity.

Electron withdrawing property contour

The blue contour at carbonyl group attached to
the nitrogen of dihydro-indole ring signifies the
importance of electron withdrawing group for
the activity (Figure 12iii).

CONCLUSION

QSAR and pharmacophore mapping studies were
performed on  arylsulfonylimidazolidinone
derivatives for their anticancer activity. 2D QSAR

79

Fig. 12ii. Strereoviews of the hydrophobic/
non-polar properties generated by
contour plots by 3D model.

N

Ds

Fig. 12iii. Strereoviews of electron withdrawing
properties generated by contour plots
by 3D model.

study indicated the requirement of smr which
positively contributed to the biological activity
and removal of polarizability AHC, T_2_2_4 index
which negatively contributed to the biological
activity. 3D- QSAR gave information about
nature of substituent’s like less steric
substituent’s are required at data points S_1467
(-0.1972, 0.0050) and electrosteric substituent’s
are required at data point E_1031 (0.7611,
0.7615) for maximum activity. A highly
predictive pharmacophore based 3D-QSAR
model was generated with five point hypotheses
(AADHR.18) with two acceptor atom, one donor
group, one hydrophobic group and one aromatic
ring as pharmacophore features. This dataset
was used to build a QSAR model where the
model with best statistics found was with PLS
factor 4 with best correlation coefficient
(r2=0.9400), standard deviation (0.1861) and
variance ratio (F) (66.6). This model showed
correlation coefficient (Q2) -0.4196 and Pearson
R (0.3526) with test set molecules. Contour
analysis from our model gave us the following
vital information about our core molecule. The
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blue contour around the nitrogen atom of
dihydro-indole ring signifies the importance of
H-bond donor group at this position. The blue
region around both the cyclohexylamide group is
in favorable region of positive activity coefficient
thereby increasing the activity. The red region
around terminal phenyl group indicates that the
particular group is not important for the activity.
The blue contour at carbonyl group attached to
the nitrogen of dihydro-indole ring signifies the
importance of electron withdrawing group for
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